Quantification of muscle fiber strain during in vivo repetitive stretch-shortening cycles.
نویسندگان
چکیده
Muscles subjected to lengthening contractions exhibit evidence of subcellular disruption, arguably a result of fiber strain magnitude. Due to the difficulty associated with measuring fiber strains during lengthening contractions, fiber length estimates have been used to formulate relationships between the magnitude of injury and mechanical measures such as fiber strain. In such protocols, the series compliance is typically minimized by removing the distal tendon and/or preactivating the muscle. These in vitro and in situ experiments do not represent physiological contractions well where fiber strain and muscle strain may be disassociated; thus the mechanisms of in vivo muscle injury remain elusive. The purpose of this paper was to quantify fiber strains during lengthening contractions in vivo and assess the potential role of fiber strain in muscle injury following repetitive stretch-shortening cycles. Using intact New Zealand White rabbit dorsiflexors, fiber strain and joint torque were measured during 50 stretch-shortening cycles. We were able to show that fiber length changes are disassociated from muscle tendon unit length changes and that complex fiber dynamics during these cycles prevent easy estimates of fiber strains. In addition, fiber strains vary, depending on how they are defined, and vary from repetition to repetition, thereby further complicating the potential relationship between muscle injury and fiber strain. We conclude from this study that, during in vivo stretch-shortening cycles, the relationship between fiber strain and muscle injury is complex. This is due, in part, to temporal effects of repeated loading on fiber strain magnitude that may be explained by an increasing compliance of the contractile element as exercise progresses.
منابع مشابه
Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage.
Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, ...
متن کاملStretch-shortening cycle: a powerful model to study normal and fatigued muscle.
Stretch-shortening cycle (SSC) in human skeletal muscle gives unique possibilities to study normal and fatigued muscle function. The in vivo force measurement systems, buckle transducer technique and optic fiber technique, have revealed that, as compared to a pure concentric action, a non-fatiguing SSC exercise demonstrates considerable performance enhancement with increased force at a given sh...
متن کاملImpact of muscle length during stretch-shortening contractions on real-time and temporal muscle performance measures in rats in vivo.
The objective of the present study was to investigate the impact of muscle length during stretch-shortening cycles on static and dynamic muscle performance. Animals were randomly assigned to an isometric (control, Con, n = 12), a short-muscle-length (S-Inj, 1.22-2.09 rad, n = 12), or a long-muscle-length (L-Inj, 1.57-2.44 rad, n = 12) group. The dorsiflexor muscles were exposed in vivo to 7 set...
متن کاملThe mechanical power output of the pectoralis muscle of blue-breasted quail (Coturnix chinensis): the in vivo length cycle and its implications for muscle performance.
Sonomicrometry and electromyographic (EMG) recordings were made for the pectoralis muscle of blue-breasted quail (Coturnix chinensis) during take-off and horizontal flight. In both modes of flight, the pectoralis strain trajectory was asymmetrical, with 70 % of the total cycle time spent shortening. EMG activity was found to start just before mid-upstroke and continued into the downstroke. The ...
متن کاملStretch of active muscle during the declining phase of the calcium transient produces biphasic changes in calcium binding to the activating sites
In voltage-clamped barnacle single muscle fibers, muscle shortening during the declining phase of the calcium transient increases myoplasmic calcium. This extra calcium is probably released from the activating sites by a change in affinity when cross-bridges break (Gordon, A. M., and E. B. Ridgway, 1987. J. Gen. Physiol. 90:321-340). Stretching the muscle at similar times causes a more complex ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 99 2 شماره
صفحات -
تاریخ انتشار 2005